
International Journal of Computer Trends and Technology Volume 73 Issue 3, 112-117, March 2025

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V73I3P114 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Evolving iPaaS to Autonomous Integration with

Generative AI

Shashi Nath Kumar

Software Architect/Independent Researcher, Florida, USA.

Corresponding Author : email2snku@gmail.com

Received: 21 January 2025 Revised: 27 February 2025 Accepted: 18 March 2025 Published: 30 March 2025

Abstract - This paper discusses a holistic approach to evolve traditional enterprise system integration, leveraging Large

Language Models, Retrieval Augmented Generation and the Model Context Protocol to build ‘Autonomous Integration with AI

Agents’. I have proposed a roadmap to a paradigm shift from traditional, static integration flows built with integration

platform offerings to a dynamic, context-aware integration ecosystem. By enabling AI agents to autonomously negotiate

contracts and protocols and by using MCP to standardize contextual data exchange, the aim is to address the challenges of

complexity, adaptability, and interoperability in modern enterprise systems, ultimately trending towards reduced development

time, adaptable to modern agile practices, and enhanced system resilience.

Keywords - Autonomous Integration, Enterprise Integration, Generative Artificial Intelligence, Integration Platform as a

Service, Large Language Models, Future of System Integration, System Integration Evolution.

1. Introduction
Modern enterprises face a tangled web of data and

application silos as bespoke and Commercial Off-The-Shelf

(COTS) systems have evolved independently. In contrast,

bespoke apps are built with interfaces with specific

requirements but can support everything from Rest over json

and GraphQL over Protobuf to asynchronous messaging

paradigms such as Kafka and RabbitMQ message bindings.

At the same time, heterogeneous aspects of COTS

applications (SaaS/on-premise) with a variety of integration

protocols (packet-based, SOAP/XML, REST, webhooks,

event-driven architecture, etc.) only add to the complexity of

these integration landscapes. Over the period, organizations

have adopted and evolved from integration landscapes like

Enterprise Service Bus (ESB) to Integration Platforms as a

Service (iPaaS), which mostly support static, pre-established

flows and are complex. These conventional approaches to

integration that depend on middleware are progressively

becoming less adequate to meet growing demands for real-

time data exchange and agile adaptation due to the

complexity and vastness of the tech stack.

Traditional iPaaS solutions have also focused on the

evolution of security, platform, API and workflow

development while often having gaps in their ability to gain

some intelligence or the flexibility needed to adapt processes

and data pipelines in the highly dynamic and heterogeneous

environments of modern organizations. This research has

highlighted the need for a paradigm shift and proposes an

evolution framework of iPaaS toward autonomous

integration with generative artificial intelligence. I have

explored how Large Language Models (LLMs) and Retrieval

Augmented Generation (RAG)/intelligent agents can bring

about a completely new system integration paradigm in the

form of a new integration model based on Model Context

protocol (MCP).

The first stage proposes the application of LLMs and

RAG to boost iPaaS ability through the analysis of API

documentation, generation of code, enrichment of

integrations via contextual information, and resolution of

obstacles such as training, accuracy, and security. These

capabilities raise key research questions pointing to, among

other things, how to train, deploy, and ensure reliability and

security.

In the next stage, LLMs are treated as integration

engines in an autonomous setting, where they can be trained

on contracts for APIs, message examples, and integration

rules. This will enable the LLM to analyze messages

dynamically, perform real-time data transformation, optimize

processes, etc., and help solve problems like security and

complexity management. Key research areas include how

LLMs work for complex workflows, architecture and

reliability.

GenAI, LLMs, and RAG make Systems integration a

problem of the past in the next research stage as they enable

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Shashi Nath Kumar / IJCTT, 73(3), 112-117, 2025

113

integration design, data mapping and development

automation. This leads to two fundamental questions—how

to effectively use GenAI for the entire integration lifecycle

and establish a single unified integration platform. The final

stage focuses on system integration using AI agents and

MCP. This would allow AI agents to negotiate and manage

integrations autonomously with MCP to communicate and

interpret context. Designed to ease the heterogeneous

integration, this approach allows for near real-time event

sinks and sources.

This work opens new possibilities with the future of

intelligent agents built upon LLMs, autonomously

negotiating and managing the integrations of enterprise

systems. Using MCP, such agents may share and interpret

the context of data and interactions, thus overcoming the

interoperability barriers imposed by the diversity in the

specification of APIs and the messages flowing over the

APIs. By doing so, this framework drives a wedge into the

mainstream strategies around integration, confronting the

perennial problems of complexity and change, scalability,

and a realistic approach toward the insuperable integration

challenges facing enterprise customers today. This is visibly

reflected by a network where the organization’s future can

more efficiently connect and respond to the demands of its

enterprise ecosystem.

2. Literature Review
The iPaaS offerings are moving away from any rigid

old-fashioned metaphors and challenges. These challenges

may be from data exposure and unauthorized access, data

quality and accuracy issues affecting information flow, the

performance bottleneck for real-time data reads, database

scalability issues, units for seamless collaboration or API

management overhead and backlog, which are compounded

by the natural heterogeneity and uncertainty of business

model evolution of any modern enterprise environments.

Recent developments in AI, especially around LLMs

and multi-agent systems, can help alleviate these integration

challenges. Individual LLM limitations can be overcome by

deploying multiple intelligent agents to collaboratively

complete complex tasks (Talebirad and Nadiri, 2023). Their

collaborative knowledge transfer also consolidates their

capabilities. This distributed intelligence strategy addresses

the inherited challenges of complex integration scenarios.

The dynamic LLM-powered Agent Network (DyLAN)

utilizes this idea, which learns to optimize the agent

selection and communication structures for effective task-

oriented collaboration (Liu et al., 2024). This methodology

can be used by various complex enterprise integration

scenarios for a versatile response mechanism.

LLM interacting with APIs often faces hallucinations

while generating API requests, which is a big area of

concern. This can be addressed by AutoFeedback static and

dynamic analysis over LLM (Huanxi Liu, 2024). This

highlights the importance of a feedback system and context

accuracy in generating repeatable and reliable integration

results. A very well defined context information is required

in API specifications of the enterprise systems, which vary

based on multiple factors like the vendor standards, their

product roadmap and the technologies they use.

Microservice Architecture is now a mainstream

Software Architecture, Development, Deployment and

Maintenance philosophy. This has required a paradigm shift

from the traditional Software Development lifecycle. LLMs

can automate the API first development approach of a REST

Microservice (Chauhan et al., 2025) by generating API

specification server-side code traditionally generated through

fixed plugins.

The LLMs can further refine the API spec and Server

side code by learning from the execution logs and error

messages. Microservices Architecture’s philosophy needs a

lot of repetitive work, and automation is at its center stage.

This approach also helps in the rapid automation of those

repetitive tasks.

This research uses these foundational works in the

GenAI space and proposes overcoming existing integration

strategies’ limitations by developing an evolutionary

architecture roadmap that marries the best autonomous AI

agents with the MCP. It also aims to build a more flexible

and responsive integration tier that can meet the requirements

of modern and highly complex enterprise environments that

must contend with the additional challenge of non-functional

attributes such as security, performance, and scalability.

In particular, the integration of multi-agent systems

collaborative intelligence with the contextual awareness

enabled by MCP could foster an era of autonomous and

intelligent enterprise integration.

3. Architectural Roadmap
This research adopts an iterative and evolutionary

approach to explore how enterprise integration architectures

evolve through a succession of stages to higher levels of

autonomy and intelligence.

This methodology will thus prove whether it is feasible

to progressively augment traditional iPaaS tools towards a

fully automated integration paradigm using LLMs, RAG and

AI agents.

The interdependencies between the different stages lead

to the next stage based on the results of the previous stage,

resulting in the formulation and assessment of the MCP for

integration of context-aware agents.

Shashi Nath Kumar / IJCTT, 73(3), 112-117, 2025

114

3.1. Intelligent iPaaS Enhancement with LLMs and RAG

This phase focuses on enhancing existing iPaaS

capabilities through the strategic integration of LLMs and

RAG. The primary goal is to introduce intelligence into the

integration process, automating traditionally manual, time-

consuming, and error-prone tasks. By leveraging LLMs and

RAG, the proposal transforms how API contracts are

understood and utilized, enriches data with contextual

information, and enables automated mediation and

orchestration. Some iPaaS offerings have already started

adopting some of the recent GenAI capabilities as per their

product roadmap, and they are the foundation for the next

stages.

3.1.1. Understanding and Transforming API Contracts

An LLM trained on a comprehensive corpus of API

documentation, specifications (OpenAPI, RAML, AsyncAPI

etc) and code examples will be used to perform contract and

transformation generation. The contract analysis will allow

the LLM to understand the semantic meaning and purpose of

API endpoints, parameters, and data structures and identify

similarities and differences across diverse API contracts to

facilitate data mapping. Based on its semantic understanding,

the LLM will then generate code or configuration for data

mapping (e.g. automating the transformation of data between

different formats like JSON and XML) and protocol bridging

(e.g. enabling seamless communication between APIs that

use different protocols like REST and SOAP). These

contexts can be vectorized and stored in a vector database

within a knowledge graph.

3.1.2. Enrichment and Contextualization of the Interaction

The RAG solution combined with this Knowledge

Graph will be used to enhance API interactions by providing

the context of the data being exchanged in a structured

manner. In the process of making API calls, the RAG system

extracts pertinent information from the knowledge graph

using the API requests and appends those contexts to the

API responses. This additional context allows the integrated

systems to make decisions with greater knowledge.

3.1.3. Mediation and Orchestration Assistance

The RAG solution will be utilized to generate the

complete integration flows specific to the platforms based on

the high-level descriptions or the business rules. This will

simplify the development process. They will also monitor

API interactions and dynamically adjust integration flows to

handle changes and exceptions.

3.1.4. Example Scenario

Let’s go through typical enterprise integration scenarios

of integrating a CRM system (JSON, REST) with an ERP

system (XML, SOAP). The LLM trained on the API

specification of both the systems can generate the JSON to

XML and XML to JSON transformation, and the RAG

system can enrich the request from the ERP system before

calling the CRM system.

3.1.5. Architectural Challenges and Considerations

This evolution faces several challenges and decision

points. Starting from the diverse and accurate data set to train

LLM to other various aspects like data security and

compliance requirements. The success of any task given to

LLM depends on the data it is trained on or the knowledge

graph available to the RAG systems. Much of the

functionality of LLM is usually a black box for the outside

world. The newer LLM models are becoming more reason

based, which may further help to understand the LLM

generated transformations to build trust and ease the

debugging.

3.2. LLM Powered Intelligent Runtime

This phase will focus on the evolution of iPaaS with the

help of LLMs to make it the primary runtime processor. The

goal is to make the integration flows intelligent and versatile

to adapt and make decisions as the interpreter without

explicit reprogramming, performing integration logic directly

within the LLM and continuously learn and refine integration

flows based on the data it processes.

3.2.1. LLM as Dynamic Message Interpreter

An LLM trained on a more comprehensive dataset of

API contracts and specifications from diverse systems

compared to the previous stage, message schemas,

integration flows and transformation rules. This training will

be aimed at making the LLM aware about the complex

relationships among message structures, data formats, and

integration logic. The LLM will dynamically analyze the

message structure and payload at run time and recall the

appropriate integration flow and transformation rules based

on its learned knowledge. A RAG solution can further

enhance the accuracy of the runtime while performing these

tasks.

3.2.2. Runtime Operation

The LLMs with RAG solutions will perform the data

transformation, mediation and routing directly based on the

identified flows and rules. Further refinement to the flows

and transformations rule can be made as the runtime

processes more messages and identifies gaps.

3.2.3. Example Scenario

Let’s go through the same scenarios of integrating a

CRM system with an ERP system. In case of a change to the

contract or a new message endpoint altogether, it can be

handled intelligently as the message arrives.

3.2.4. Architectural Challenges and Considerations

This evolution faces even more complex challenges and

decision points. The LLMs need to be trained to handle the

complexities of reasoning and transformation during runtime.

Shashi Nath Kumar / IJCTT, 73(3), 112-117, 2025

115

LLMs should transparently share their thought process while

performing the tasks for trust and debussing. This will

demand a more powerful and larger context window,

efficient memory optimization, and seamless integration with

the APIs and messaging. While it presents substantial

technical challenges, its successful implementation could

revolutionize enterprise integration practices, and iPaaS

vendors should move in this direction for their product

roadmaps.

3.3. GenAI-Driven Integration Lifecycle Simplification

This phase focuses on leveraging the broader capabilities

of GenAI, including LLMs, to simplify and consolidate the

enterprise integration lifecycle. This stage aims to move

beyond automated assistance and intelligent runtimes and

apply GenAI to streamline the Integration lifecycle, from

design to maintenance. The previous stage primarily deals

with the “how” of runtime processing, whereas this stage

addresses the “how” of the entire integration lifecycle.

3.3.1. LLM-Powered Integration Design
LLMs will be utilized to understand integration

requirements expressed in natural language and generate

executable integration flows. Additionally, LLMs will be

enabled to suggest optimizations to existing flows based on

performance data. This includes using LLMs to analyze

natural language descriptions of integration needs, generating

integration and automation flows (e.g., in BPMN), and

suggesting flow optimizations.

3.3.2. LLM-Assisted Data Mapping and Transformation
GenAI can simplify data mapping and transformation

between different systems by automatically matching schema

and transformation code. RAG can be used as data

validation.

3.3.3. Deployment and Orchestration
GenAI will assist in evaluating deployment strategies,

addressing security and privacy considerations, and ensuring

integration with existing on-premises or cloud offering

infrastructure. It can also generate and gather historical

scripts and configurations, as well as generate new and

recommend optimal deployment strategies.

3.3.4. GenAI-Enabled Development Processes
New development processes and tools will be developed

to leverage GenAI for streamlined integration, such as code

generation, automated testing and validation, and automated

documentation generation. Significant improvements have

already been made in this area with the advent of copilots for

software development.

3.3.5. Consolidation of Integration Capabilities
The LLMs with other GenAI capabilities will be used to

simplify the integration landscape as a whole. This includes

developing unified integration platforms and integrating

LLMs with Robotic Process Automation (RPA) and other

workflow capabilities throughout the integration lifecycle.

3.3.6. Example Scenario

Let’s go through the same scenarios of integrating a

CRM system with an ERP system. The organization has now

decided to bring in a new CRM platform. The entire

integration lifecycle can be handled automatically, reducing

the development lifecycle.

3.2.7. Architectural Challenges and Considerations

This phase’s challenges and decision points will be

selecting the LLM type and making them understand the

integration flows for the domain-specific knowledge. Since

this phase is about an overhaul of the entire lifecycle,

everything from the platform library to the standard testing

becomes a critical aspect of training LLM or the RAG

solution.

This is a completely unexplored area in the realm of

iPaaS and Enterprise Integration; however, it definitely has

the potential to disrupt the integration landscape of the

product market.

3.4 Autonomous Integration with AI Agents and the Model

Context Protocol (MCP)
This phase presents the vision of AI agents

autonomously managing integrations enabled by the MCP.

The goal is to move beyond static integration flows and

introduce a dynamic, context-aware approach that facilitates

seamless integration of diverse systems. This is a game

changing shift to a fully decentralized and autonomous

model with agents providing integration services in a loosely

coupled container using a common protocol for exchanging

context, where agents perform their interaction

independently of any pre-defined flow or centralized

orchestrator.

3.4.1. Autonomous Integration with AI Agents

Traditional integration patterns are based on static, pre-

defined, and often brittle integration flows. In comparison,

the AI agent approach assumes that each system or service

has its intelligent agent. These agents are capable of

comprehending the capabilities, data formats, and

communication protocols of their respective systems.

Agents can answer and negotiate mutually to make a

connection, share data, settle conflicts, etc. In addition, they

can learn from their previous interactions and adapt their

behavior based on changing conditions or requirements.

This results in ess development work because there is no

need to define the flow manually; more agile by linking the

system easily, responding rapidly, and more resilient because

if one agent does not work as expected or fails for some

reason, other agents can handle such situations.

Shashi Nath Kumar / IJCTT, 73(3), 112-117, 2025

116

3.4.2. Contextualized Integration with Model Context

Protocol (MCP)
A major hurdle in this process of seamless integration is

that AI agents must share and comprehend the context

behind the interactions and data scattered across multiple

diverse systems. The MCP solves this problem by enabling

agents to exchange contextual data like metadata, schemas,

and semantic information. MCP allows agents to learn the

meaning and relationships of the data irrespective of the

underlying system or format and adapt dynamically based on

the context in which interactions occur. This enables

improved interoperability, better understanding of data, and

lower integration complexity through simplified data

mapping and transformation.

3.4.3. Example Scenario
Now, let’s extend our enterprise integration use case.

The organization acquired a few smaller companies and now

has multiple ERP and CRM platforms. In this scenario, each

system has an AI agent. These agents autonomously

negotiate with each other to exchange messages seamlessly

without any development need by utilizing MCP to share

contextual information about endpoints or messages,

ensuring a consistent understanding of the data across all

systems.

3.4.4. Architectural Challenges and Considerations
MCP, a new protocol (rather interface), needs deep

research in standardized communication protocols and

languages for AI agent interaction.

The complexities around the design and maintenance of

a multi-agent ecosystem, as well as ensuring trust and

security, are another major challenge. We will have to watch

out for the MCP adoption and Agentic API ecosystem and its

economic viability.

4. Conclusion and Future Direction
The research proposes an iterative and transformative

approach to arrive at a self-managing integration ecosystems

based on AI agents and the Model Context Protocol. This

evolution is all set to foil those persistent challenges of

complexity, agility and scalability that enterprises face in

integration and build a more responsive and interconnected

digital future. Eliminating the need for rigid integration flows

provided by traditional middleware will significantly

decrease integration debt and enable quicker implementation

of new business processes.

4.1. Future Research Directions and Open Questions

This results in various research directions and open

questions arising from this roadmap. This could include the

development of standardized communication protocols and

negotiation strategies for AI agents. Data should be focused

on rationalizing and improving the Model Context Protocol

to ensure seamless synchronization with various systems and

appropriate management of contextual data. It is important to

study the security and privacy of autonomous integration,

especially with respect to on-premise deployment. Last but

not least, research on the explainability of LLM-driven

integration processes and the ethical implications of

automated AI agents is needed. Future works can explore the

scale and performance of LLM based integration engines

under heavy workloads. More importantly, effective LLM

training and fine-tuning practices for particular integration

domains remain a research opportunity.

4.2. Real-World Implementation Considerations

Here is some food for thought on how you implement

this architectural roadmap in the real world. First, LLMs

require significant quantities of high-quality training data to

enable accurate integration processes. Data is stored in

different locations, especially in on-premise environments, so

organizations have to face the security challenges around

data privacy and access control. Interoperability should be

pursued by the promotion of standardized protocols and

frameworks for both agent communication and MCP

integration. Also, the findings suggest that organizations

need to have strong governance policies in place for

contextual data management and set rules for the use of

autonomous AI agents. More disruptions and the adoption

of autonomous integration through gradual implementation

of a phased approach could start with the iPaaS upgrades as

the situation turns to autonomous integration.

The human part of integration must not be overlooked:

how humans will connect with and govern these new

systems. Most of the technologies we work with today were

not invented when many of us were in school. We have

arrived here with some directions and forward thinking from

the past. Let us see how some thought processes of today

shape the future. The human angle of this journey is going to

be the most interesting force and challenge in the future as

how business demands shape the future of AI itself and how

AI shapes the future of integration.

Funding Statement
 Self Funded

References

[1] Saurabh Chauhan et al., “LLM-Generated Microservice Implementations from RESTful API Definitions,” arXiv, vol. 1, pp. 1-14,

2025. [CrossRef] [Google Scholar] [Publisher Link]

[2] Yashar Talebirad, and Amirhossein Nadiri, “Multi Agent Collaboration: Harnessing the Power of Intelligent LLM Agents,” arXiv, vol.

1, pp. 1-11, 2023. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.48550/arXiv.2502.09766
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=LLM-Generated+Microservice+Implementations+from+RESTful+API+Definitions&btnG=
https://arxiv.org/abs/2502.09766
https://doi.org/10.48550/arXiv.2306.03314
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multi+Agent+Collaboration%3A+Harnessing+the+Power+of+Intelligent+LLM+Agents&btnG=
https://arxiv.org/abs/2306.03314

Shashi Nath Kumar / IJCTT, 73(3), 112-117, 2025

117

[3] Zijun Liu et al., “A Dynamic LLM-Powered Agent Network for Task-Oriented Agent Collaboration,” arXiv, pp. 1-30, 2024.

[CrossRef] [Google Scholar] [Publisher Link]

[4] Huanxi Liu et al., “AutoFeedBack: An LLM-based Framework for Efficient and Accurate API Request Generation,” arXiv, vol. 2, pp.

1-17, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[5] Andrew Forbes, The Role of Generative AI in the Next Phase of Middleware, Forbes, 2023. [Online]. Available:

https://www.forbes.com/councils/forbestechcouncil/2023/09/14/the-role-of-generative-ai-in-the-next-phase-of-middleware/

[6] Patrick Mcguinness, Model Context Protocol Changes AI Integration, 2024. [Online]. Available:

https://patmcguinness.substack.com/p/model-context-protocol-changes-ai

https://doi.org/10.48550/arXiv.2310.02170
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Dynamic+LLM-Powered+Agent+Network+for+Task-Oriented+Agent+Collaboration&btnG=
https://arxiv.org/abs/2310.02170
https://doi.org/10.48550/arXiv.2410.06943
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Autofeedback%3A+An+LLM-based+Framework++For+Efficient+and+Accurate+API+Request+Generation&btnG=
https://arxiv.org/abs/2410.06943

